Quantitative Methods in Political Science Recitation

Mai Nguyen

New York University

September 30, 2013

• Summarize data using the *summarize* command

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot
 - Histogram

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot
 - Histogram
 - Pie Charts

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot
 - Histogram
 - Pie Charts
 - Bar Charts

- Summarize data using the summarize command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot
 - Histogram
 - Pie Charts
 - Bar Charts
 - Box Plots

- Summarize data using the *summarize* command
- Data visualizations using commands as well as the dropdown menu:
 - Stem and Leaf Plot
 - Histogram
 - Pie Charts
 - Bar Charts
 - Box Plots
- Saving and editing graphs using graph editor

Correlation Analysis

Remember from class...

How do we get here?

Correlation Analysis

• What does correlation tell us? How is it measured?

Correlation Analysis

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties
- We can perform a correlation analysis in Stata using the *correlate* command:

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties
- We can perform a correlation analysis in Stata using the *correlate* command:
 - Type: correlate variablename1 variablename2

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties
- We can perform a correlation analysis in Stata using the *correlate* command:
 - Type: correlate variablename1 variablename2
 - Example: correlate gdppc investment

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties
- We can perform a correlation analysis in Stata using the *correlate* command:
 - Type: correlate variablename1 variablename2
 - Example: correlate gdppc investment
 - As always, you can shorten the Stata command and use corr

- What does correlation tell us? How is it measured?
 - Measures the strength of the linear relationship between two variables
 - Correlation coefficient (r); many properties
- We can perform a correlation analysis in Stata using the *correlate* command:
 - Type: correlate variablename1 variablename2
 - Example: correlate gdppc investment
 - As always, you can shorten the Stata command and use corr

<pre>. correlate gdppc agehinst (obs=155)</pre>				
	gdppc	agehinst		
gdppc agehinst	1.0000 0.7168	1.0000		

• You can use *correlate* for more than two variables:

- You can use *correlate* for more than two variables:
 - Example: correlate gdppc agehinst investment

- You can use *correlate* for more than two variables:
 - Example: correlate gdppc agehinst investment

. correlate gdppc agehinst investment
(obs=155)

	gdppc	agehinst	invest~t
gdppc	1.0000		
agehinst	0.7168	1.0000	
investment	0.1516	0.1027	1.0000

• You can use *correlate* for more than two variables:

• Example: correlate gdppc agehinst investment

. correlate gdppc agehinst investment
(obs=155)

	gdppc	agehinst	invest~t
gdppc	1.0000		
agehinst	0.7168	1.0000	
investment	0.1516	0.1027	1.0000

 Notice correlation coefficients are still only for each pair of variables.

• We can do this using the *scatter* command in Stata

- We can do this using the scatter command in Stata
 - Type scatter variablename1 variablename2

- We can do this using the scatter command in Stata
 - Type scatter variablename1 variablename2
 - Example: scatter gdppc agehinst

- We can do this using the scatter command in Stata
 - Type scatter variablename1 variablename2
 - Example: scatter gdppc agehinst
- Like other forms of data visualization, you can save and edit your scatterplot in the "Graph Editor" window

- We can do this using the scatter command in Stata
 - Type scatter variablename1 variablename2
 - Example: scatter gdppc agehinst
- Like other forms of data visualization, you can save and edit your scatterplot in the "Graph Editor" window
- You can also use the dropdown menu: Graphics \rightarrow Twoway graph

Scatterplots

• We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable
- You can do a variety of things in creating a new variable:

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable
- You can do a variety of things in creating a new variable:
 - generate gdp10=gdppc/10

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable
- You can do a variety of things in creating a new variable:
 - generate gdp10=gdppc/10
 - This divides the gdppc variable by 10
We're going to switch gears a little bit now and learn how to create and recode variables in Stata. To create a new variable:

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable
- You can do a variety of things in creating a new variable:
 - generate gdp10=gdppc/10
 - This divides the gdppc variable by 10
 - generate zero=0

We're going to switch gears a little bit now and learn how to create and recode variables in Stata. To create a new variable:

- We could do what we did in week 3 where we manually input data into blank cells in the "Data Editor" window to create a new variable...
- A better option is to use the Stata *generate* command. The general format for creating a new variable is:
 - generate newvariablename=something
 - Example: generate new=agehinst
 - This creates a variable called "new" that is identitcal to the agehinst variable
- You can do a variety of things in creating a new variable:
 - generate gdp10=gdppc/10
 - This divides the gdppc variable by 10
 - generate zero=0
 - This creates a variable that is all zeros

• Let's take a look at at the hinst variable again

- Let's take a look at at the hinst variable again
- tab hinst

- Let's take a look at at the hinst variable again
- tab hinst
- tab hinst, nolabel

- Let's take a look at at the hinst variable again
- tab hinst
- tab hinst, nolabel

,	Six-fold regime classificat ion	Freq.	Percent	Cum.
	0	55	28.95	28.95
	1	21	11.05	40.00
	2	32	16.84	56.84
	3	46	24.21	81.05
	4	23	12.11	93.16
	5	13	6.84	100.00
	Total	190	100.00	

. tab hinst, nolabel

• We can recode the *hinst* variable use the *recode* command

- We can recode the hinst variable use the recode command
- Type recode variablename something

- We can recode the hinst variable use the recode command
- Type recode variablename something
 - generate system=hinst

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

Cum.	Percent	Freq.	system
56.84 100.00	56.84 43.16	108 82	0 1
	100.00	190	Total

. tab system

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

system	Freq.	Percent	Cum.
0 1	108 82	56.84 43.16	56.84 100.00
Total	190	100.00	

We can also recode continuous variables in a similar way

. tab system

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

system	Freq.	Percent	Cum.
0 1	108 82	56.84 43.16	56.84 100.00
Total	190	100.00	

• We can also recode continuous variables in a similar way

. tab system

generate majority=govsh

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

system	Freq.	Percent	Cum.
0 1	108 82	56.84 43.16	56.84 100.00
Total	190	100.00	

• We can also recode continuous variables in a similar way

. tab system

- generate majority=govsh
- recode majority 0/0.5=0 0.5/1=1

- We can recode the *hinst* variable use the *recode* command
- Type recode variablename something
 - generate system=hinst
 - recode system 0 1 2=0 3 4 5=1
 - Here we created a variable "system" and recoded it to become a dichotomous variable; notice it is identical to the *regime* variable

system	Freq.	Percent	Cum.
0 1	108 82	56.84 43.16	56.84 100.00
Total	190	100.00	

• We can also recode continuous variables in a similar way

. tab system

- generate majority=govsh
- recode majority 0/0.5=0 0.5/1=1
- Here we turned a continous variable into a dichotomous variable

Missing Data

Let's take a look at a scatterplot of income per capita and investment: *scatter gdppc investment*

Missing Data

Let's take a look at a scatterplot of income per capita and investment: *scatter gdppc investment*

correlation = 0.1516 (found by correlate gdppc investment)

Missing Data

Let's take a look at a scatterplot of income per capita and investment: *scatter gdppc investment*

correlation = 0.1516 (found by correlate gdppc investment)

Does something look a little weird?

Mai Nguyen (New York University)

Quantitative Methods in Political Science

Let's take a look at our data:

- Let's take a look at our data:
 - sum gdppc, detail

Mai Nguyen (New York University)

• Let's take a look at our data:

• sum gdppc, detail

. sum gdppc, detail

	Income per capita						
	Percentiles	Smallest					
1%	299	-1725					
5%	617	299					
10%	674	418	0bs	155			
25%	1144	498	Sum of Wgt.	155			
50%	2930		Mean	5318.639			
		Largest	Std. Dev.	5814.222			
75%	6965	20421					
90%	15925	20585	Variance	3.38e+07			
95%	18602	21536	Skewness	1.477913			
99%	21536	24484	Kurtosis	4.141886			

Quantitative Methods in Political Science

Let's take a look at our data:

- sum gdppc, detail
 - . sum gdppc, detail

	Income per capita					
	Percentiles	Smallest				
1%	299	-1725				
5%	617	299				
10%	674	418	Obs	155		
25%	1144	498	Sum of Wgt.	155		
50%	2930		Mean	5318.639		
		Largest	Std. Dev.	5814.222		
75%	6965	20421				
90%	15925	20585	Variance	3.38e+07		
95%	18602	21536	Skewness	1.477913		
99%	21536	24484	Kurtosis	4.141886		

• We can see from the scatterplot and summarize output that we have some values of income per capita that are negative. Does this make sense?

• First let's find the observations that have negative income per capita:

- First let's find the observations that have negative income per capita:
 - list name country gdppc if gdppc<0

- First let's find the observations that have negative income per capita:
 - list name country gdppc if gdppc<0
 - We find that Germany has negative income per capita

- First let's find the observations that have negative income per capita:
 - list name country gdppc if gdppc<0
 - We find that Germany has negative income per capita
- We can fix this using the *recode* command:

- First let's find the observations that have negative income per capita:
 - list name country gdppc if gdppc<0
 - We find that Germany has negative income per capita
- We can fix this using the *recode* command:
 - recode gdppc min/0=.

- First let's find the observations that have negative income per capita:
 - list name country gdppc if gdppc<0
 - We find that Germany has negative income per capita
- We can fix this using the *recode* command:
 - recode gdppc min/0=.
 - The period (.) is used to signify missing data in Stata

• Let's take a look at our data again:

- Let's take a look at our data again:
 - sum gdppc, detail

• Let's take a look at our data again:

• sum gdppc, detail

. sum gdppc, detail

	Income per capita					
	Percentiles	Smallest				
1%	418	299				
5%	636	418				
10%	680	498	Obs	154		
25%	1195	504	Sum of Wgt.	154		
50%	2963.5		Mean	5364.377		
		Largest	Std. Dev.	5805.149		
75%	6965	20421				
90%	15925	20585	Variance	3.37e+07		
95%	18602	21536	Skewness	1.482589		
99%	21536	24484	Kurtosis	4.133748		

Tacama non conita

• Let's take a look at our data again:

- sum gdppc, detail
 - . sum gdppc, detail

	Income per capita						
	Percentiles	Smallest					
1%	418	299					
5%	636	418					
10%	680	498	Obs	154			
25%	1195	504	Sum of Wgt.	154			
50%	2963.5		Mean	5364.377			
		Largest	Std. Dev.	5805.149			
75%	6965	20421					
90%	15925	20585	Variance	3.37e+07			
95%	18602	21536	Skewness	1.482589			
99%	21536	24484	Kurtosis	4.133748			

• Now everything is positive. Also notice how the mean, percentiles, variance and standard deviation changes as well.

• Now we can look at the *investment* variable:

• Now we can look at the *investment* variable:

• sum investment, detail

• Now we can look at the *investment* variable:

• sum investment, detail

. sum investment, detail

	Percentiles	Smallest		
1%	-999	-999		
5%	-999	-999		
10%	-999	-999	Obs	190
25%	3.13	-999	Sum of Wgt.	190
50%	10.62		Mean	-209.2356
		Largest	Std. Dev.	421.8945
75%	18.5	39.6		
90%	23.315	40.89	Variance	177994.9
95%	26.44	41.65	Skewness	-1.343354
99%	41.65	42.94	Kurtosis	2.806406

Total private investment
• We have quite a bit of data that is listed as -999. Does this seem right?

- We have quite a bit of data that is listed as -999. Does this seem right?
- Oftentimes when merging data from outside sources, -999 will be used to represent missing data. However, we need to change this in Stata.

- We have quite a bit of data that is listed as -999. Does this seem right?
- Oftentimes when merging data from outside sources, -999 will be used to represent missing data. However, we need to change this in Stata.
- Again, we can fix this using the *recode* command:

- We have quite a bit of data that is listed as -999. Does this seem right?
- Oftentimes when merging data from outside sources, -999 will be used to represent missing data. However, we need to change this in Stata.
- Again, we can fix this using the *recode* command:
 - recode investment -999=.

- We have quite a bit of data that is listed as -999. Does this seem right?
- Oftentimes when merging data from outside sources, -999 will be used to represent missing data. However, we need to change this in Stata.
- Again, we can fix this using the *recode* command:
 - recode investment -999=.
 - The missing data is now coded with a " . "

• sum investment, detail

• sum investment, detail

. sum investment, detail

	Percentiles	Smallest		
1%	2.53	1.3		
5%	3.23	2.53		
10%	4.73	2.7	Obs	148
25%	9.18	2.96	Sum of Wgt.	148
50%	13.145		Mean	14.88676
		Largest	Std. Dev.	8.374916
75%	20.44	39.6		
90%	23.98	40.89	Variance	70.13921
95%	30.25	41.65	Skewness	.8915419
99%	41.65	42.94	Kurtosis	4.029598

Total private investment

• sum investment, detail

. sum investment, detail

-				
	Percentiles	Smallest		
1%	2.53	1.3		
5%	3.23	2.53		
10%	4.73	2.7	Obs	148
25%	9.18	2.96	Sum of Wgt.	148
50%	13.145		Mean	14.88676
		Largest	Std. Dev.	8.374916
75%	20.44	39.6		
90%	23.98	40.89	Variance	70.13921
95%	30.25	41.65	Skewness	.8915419
99%	41.65	42.94	Kurtosis	4.029598

Total private investment

• Again notice how many of our descriptive statistics have changed.

Missing Data

Let's go all the way back and take a look at the scatterplot of income per capita and investment again: *scatter gdppc investment*

Missing Data

Let's go all the way back and take a look at the scatterplot of income per capita and investment again: *scatter gdppc investment*

Much better looking scatterplot

Missing Data

Let's go all the way back and take a look at the scatterplot of income per capita and investment again: *scatter gdppc investment*

Much better looking scatterplot

• correlation = 0.6071 (found by correlate gdppc investment)

Mai Nguyen (New York University)

Quantitative Methods in Political Science