Quantitative Methods in Political Science Recitation

Mai Nguyen

New York University

October 7, 2013

Correlation Analysis

- Correlation Analysis
- Scatterplots

- Correlation Analysis
- Scatterplots
- Creating and recoding variables

- Correlation Analysis
- Scatterplots
- Creating and recoding variables
 - generate newvariablename=something

- Correlation Analysis
- Scatterplots
- Creating and recoding variables
 - generate newvariablename=something
 - recode variablename something

- Correlation Analysis
- Scatterplots
- Creating and recoding variables
 - generate newvariablename=something
 - recode variablename something
 - Addressing problems with missing data

- Correlation Analysis
- Scatterplots
- Creating and recoding variables
 - generate newvariablename=something
 - recode variablename something
 - Addressing problems with missing data
 - Recall that missing data is represented by "." in Stata

Review of regression

- Review of regression
- Bivariate regressions in Stata

- Review of regression
- Bivariate regressions in Stata
- Interpretation of regression output

- Review of regression
- Bivariate regressions in Stata
- Interpretation of regression output
- More work with scatterplots

• Open up the Przeworski dataset

- Open up the Przeworski dataset
- If you didn't save your dataset from last week, make sure you recode the necessary variables:

- Open up the Przeworski dataset
- If you didn't save your dataset from last week, make sure you recode the necessary variables:
 - recode gdppc min/0=.

- Open up the Przeworski dataset
- If you didn't save your dataset from last week, make sure you recode the necessary variables:
 - recode gdppc min/0=.
 - recode investment -999=.

- Open up the Przeworski dataset
- If you didn't save your dataset from last week, make sure you recode the necessary variables:
 - recode gdppc min/0=.
 - recode investment -999=.
 - What does this do again?

$$\hat{y} = a + bx \tag{1}$$

$$\hat{y} = a + bx \tag{1}$$

• \hat{y} is the predicted value of y

$$\hat{y} = a + bx \tag{1}$$

- \hat{y} is the predicted value of y
- a is the intercept

$$\hat{y} = a + bx \tag{1}$$

- \hat{y} is the predicted value of y
- a is the intercept
- b is the slope

• The basic command for running a regression in Stata is regress

- The basic command for running a regression in Stata is *regress*
 - Type regress yvariablename xvariablename

- The basic command for running a regression in Stata is regress
 - Type regress yvariablename xvariablename
 - Example: regress gdppc agehinst

- The basic command for running a regression in Stata is *regress*
 - Type regress yvariablename xvariablename
 - Example: regress gdppc agehinst
 - As always you can shorten the command in Stata and use *reg* (the command then would be *reg gdppc agehinst*)

- The basic command for running a regression in Stata is *regress*
 - Type regress yvariablename xvariablename
 - Example: regress gdppc agehinst
 - As always you can shorten the command in Stata and use *reg* (the command then would be *reg gdppc agehinst*)
- How do we interpret the results? Let's take a look at the output.

. regress gdppc agehinst

Source	SS	df	MS		Number of obs F(1, 152)	
Model Residual	2.7428e+09 2.4133e+09	1 152	2.7428e+09 15876745.7		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5320
Total	5.1561e+09	153	33699753.5		Root MSE	= 3984.6
gdppc	Coef.	Std. I	Err. t	P> t	[95% Conf.	Interval]
agehinst _cons	162.9329 1543.919	12.390 433.1		0.000 0.000	138.4415 688.2255	187.4242 2399.612

From the output we can create our regression line:

• The slope is given by the coefficient for *agehinst*: 162.9329 or we'll say 163

From the output we can create our regression line:

- The slope is given by the coefficient for agehinst: 162.9329 or we'll say 163
- The intercept is given by the constant: 1543.919 or we'll say 1544

From the output we can create our regression line:

- The slope is given by the coefficient for *agehinst*: 162.9329 or we'll say 163
- The intercept is given by the constant: 1543.919 or we'll say 1544
- We can plug this into our general regression line formula

 $\hat{y} = 1544 + 163x$

Income PerCapita = 1544 + 163 * AgeCurrentRegime

• Slope:

- Slope:
 - For each [unit] increase in [x], y is expected to [increase/decrease] on average by [the slope].

- Slope:
 - For each [unit] increase in [x], y is expected to [increase/decrease] on average by [the slope].
- Intercept:

- Slope:
 - For each [unit] increase in [x], y is expected to [increase/decrease] on average by [the slope].
- Intercept:
 - When [x] is 0, [y] is expected to equal the [y-intercept].

- Slope:
 - For each [unit] increase in [x], y is expected to [increase/decrease] on average by [the slope].
- Intercept:
 - When [x] is 0, [y] is expected to equal the [y-intercept].
- R-squared (proportion of variability of dependent variable that is accounted for by the independent variable (or the model):

We can interpret using the templates from class:

- Slope:
 - For each [unit] increase in [x], y is expected to [increase/decrease] on average by [the slope].
- Intercept:
 - When [x] is 0, [y] is expected to equal the [y-intercept].
- R-squared (proportion of variability of dependent variable that is accounted for by the independent variable (or the model):
 - So [XXX] % of the variability in y is explained by x (or by the model).

• Answer the research question by running a bivariate regression

- Answer the research question by running a bivariate regression
- Construct the regression equation line

- Answer the research question by running a bivariate regression
- Construct the regression equation line
- Interpret the slope

- Answer the research question by running a bivariate regression
- Construct the regression equation line
- Interpret the slope
- Interpret the intercept

- Answer the research question by running a bivariate regression
- Construct the regression equation line
- Interpret the slope
- Interpret the intercept
- Interpret the R-squared

. regress gdppc investment

Source	SS	df	MS			Number of obs F(1, 129)	
Model Residual Total	1.7454e+09 2.9898e+09 4.7352e+09	1 129 130	2317	54e+09 6820.5 4558.6		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.3686
gdppc	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
investment _cons	424.7486 -613.219	48.94 841.		8.68 -0.73	0.000 0.467	327.9086 -2278.145	521.5887 1051.707

More on scatterplots

Recall last week we made scatterplots using the *scatter* command.

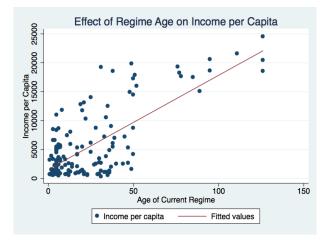
• Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?

More on scatterplots

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst)


- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst)
- Additionally, we can add options to make a more complete graph:

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst)
- Additionally, we can add options to make a more complete graph:
 - twoway (scatter yvariablename xvariablename) (lfit yvariablename xvariablename), title() ytitle() xtitle()

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst)
- Additionally, we can add options to make a more complete graph:
 - twoway (scatter yvariablename xvariablename) (lfit yvariablename xvariablename), title() ytitle() xtitle()
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst), title(Effect of Regime Age on Income per Capita) ytitle(Income per Capita) xtitle(Age of Current Regime)

- Wouldn't it be nice if we could visualize our regression line and add it to a scatterplot?
- We can do just that:
 - Type: *twoway* (*scatter* **yvariablename xvariablename**) (*lfit* **yvariablename xvariablename**)
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst)
- Additionally, we can add options to make a more complete graph:
 - twoway (scatter yvariablename xvariablename) (lfit yvariablename xvariablename), title() ytitle() xtitle()
 - Example: twoway (scatter gdppc agehinst) (lfit gdppc agehinst), title(Effect of Regime Age on Income per Capita) ytitle(Income per Capita) xtitle(Age of Current Regime)
- As always you can edit and save graphs in the "Graph Editor" window

More on scatterplots

