Quantitative Methods in Political Science

 RecitationMai Nguyen

New York University

October 16, 2013

Review from Last Week's Lab Session

- Regression

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output
- Slope (coefficient)

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output
- Slope (coefficient)
- Intercept (constant)

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output
- Slope (coefficient)
- Intercept (constant)
- R-squared

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output
- Slope (coefficient)
- Intercept (constant)
- R-squared
- Number of observations

Review from Last Week's Lab Session

- Regression
- Bivariate Regressions in Stata using the regress command
- Interpretation of regression output
- Slope (coefficient)
- Intercept (constant)
- R-squared
- Number of observations
- Scatter plots with a fitted line using Ifit

This Week...

- More on bivariate regressions

This Week...

- More on bivariate regressions
- Pairwise correlations

This Week...

- More on bivariate regressions
- Pairwise correlations
- Depicting correlations in a plot

This Week...

- More on bivariate regressions
- Pairwise correlations
- Depicting correlations in a plot
- Multiple regression

Quick Recap of Bivariate Regressions

As you recall for bivariate regressions in Stata we use the regress command:

- regress yvariablename xvariablename

Quick Recap of Bivariate Regressions

As you recall for bivariate regressions in Stata we use the regress command:

- regress yvariablename xvariablename
- Let's try regress gdppc openk

Quick Recap of Bivariate Regressions

As you recall for bivariate regressions in Stata we use the regress command:

- regress yvariablename xvariablename
- Let's try regress gdppc openk
- regress gdppc openk

Source	SS	df	MS
Model Residual	$\mathbf{9 4 2 6 9 7 6 0 . 9}$	$1.6531 \mathrm{e}+09$	130

Number of obs $=132$
F(1, 130) = 2.63
Prob $>$ F $=0.1070$
R-squared $=0.0199$
Adj R-squared $=0.0123$
Root MSE $=5982.7$

gdppc	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
openk	21.60243	13.31116	$\mathbf{1 . 6 2}$	$\mathbf{0 . 1 0 7}$	$\mathbf{- 4 . 7 3 2 1 0 3}$	$\mathbf{4 7 . 9 3 6 9 6}$
_cons	4129.315	1090.924	$\mathbf{3 . 7 9}$	$\mathbf{0 . 0 0 0}$	$\mathbf{1 9 7 1 . 0 5 2}$	$\mathbf{6 2 8 7 . 5 7 9}$

Quick Recap of Bivariate Regressions

- Recall that from our output we can create our regression line equation and interpret each part:

Quick Recap of Bivariate Regressions

- Recall that from our output we can create our regression line equation and interpret each part:

$$
\hat{y}=a+b x
$$

Quick Recap of Bivariate Regressions

- Recall that from our output we can create our regression line equation and interpret each part:

$$
\begin{aligned}
& \hat{y}=a+b x \\
& \hat{y}=4129+22 x
\end{aligned}
$$

Quick Recap of Bivariate Regressions

- Recall that from our output we can create our regression line equation and interpret each part:

$$
\begin{aligned}
& \hat{y}=a+b x \\
& \hat{y}=4129+22 x \\
& \text { IncomePerCapita }=4129+22 * \text { OpennessToTrade }
\end{aligned}
$$

Quick Recap of Bivariate Regressions

- Recall that from our output we can create our regression line equation and interpret each part:

$$
\begin{aligned}
& \hat{y}=a+b x \\
& \hat{y}=4129+22 x \\
& \text { IncomePerCapita }=4129+22 * \text { OpennessToTrade }
\end{aligned}
$$

- Anyone want to try interpreting each part of this?

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk
- corr gdppc agehinst openk
(obs=132)

	gdppc agehinst		openk
gdppc	1.0000		
agehinst	0.7347	1.0000	
openk	$\mathbf{0 . 1 4 0 9}$	$\mathbf{- 0 . 0 1 1 1}$	$\mathbf{1 . 0 0 0 0}$

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk
. corr gdppc agehinst openk
(obs=132)

	gdppc agehinst		openk
gdppc	1.0000		
agehinst	0.7347	1.0000	
openk	$\mathbf{0 . 1 4 0 9}$	$\mathbf{- 0 . 0 1 1 1}$	$\mathbf{1 . 0 0 0 0}$

- Now let's try a new command pwcorr which gives us pairwise correlations:

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk
. corr gdppc agehinst openk
(obs=132)

	gdppc agehinst		openk
gdppc	$\mathbf{1 . 0 0 0 0}$		
agehinst	$\mathbf{0 . 7 3 4 7}$	$\mathbf{1 . 0 0 0 0}$	
openk	$\mathbf{0 . 1 4 0 9}$	$\mathbf{- 0 . 0 1 1 1}$	$\mathbf{1 . 0 0 0 0}$

- Now let's try a new command pwcorr which gives us pairwise correlations:
- pwcorr gdppc agehinst openk

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk
- corr gdppe agehinst openk
(obs=132)

	gdppc agehinst		openk
gdppc	1.0000		
agehinst	$\mathbf{0 . 7 3 4 7}$	1.0000	
openk	$\mathbf{0 . 1 4 0 9}$	$-\mathbf{0 . 0 1 1 1}$	$\mathbf{1 . 0 0 0 0}$

- Now let's try a new command pwcorr which gives us pairwise correlations:
- pwcorr gdppc agehinst openk
. pwcorr gdppc agehinst openk

	gdppc agehinst		openk
gdppc	1.0000		
agehinst	0.7294	1.0000	
openk	0.1409	0.0061	1.0000

More on Correlations

- A couple of weeks ago we learned the correlate (or corr) command in Stata, let's work with that some more:
- corr gdppc agehinst openk

> corr gdppc agehinst openk
> (obs=132)

	gdppc agehinst		openk
gdppc	$\mathbf{1 . 0 0 0 0}$		
agehinst	$\mathbf{0 . 7 3 4 7}$	$\mathbf{1 . 0 0 0 0}$	
openk	$\mathbf{0 . 1 4 0 9}$	$\mathbf{- 0 . 0 1 1 1}$	$\mathbf{1 . 0 0 0 0}$

- Now let's try a new command pwcorr which gives us pairwise correlations:
- pwcorr gdppc agehinst openk
. pwcorr gdppc agehinst openk

	gdppc agehinst		openk
gdppc	1.0000		
agehinst	0.7294	1.0000	
openk	0.1409	0.0061	1.0000

- Notice any difference?

More on Correlations

We can depict these pairwise correlations in one plot:

- Type graph matrix yvariablename xvariablename1 xvariablename2

More on Correlations

We can depict these pairwise correlations in one plot:

- Type graph matrix yvariablename xvariablename1 xvariablename2
- Try graph matrix gdppc agehinst openk

More on Correlations

We can depict these pairwise correlations in one plot:

- Type graph matrix yvariablename xvariablename1 xvariablename2
- Try graph matrix gdppc agehinst openk
- The plot itself may be a little confusing so let's go over it...

More on Correlations

More on Correlations

You also have the option of just showing half of the plot:

- Type: graph matrix gdppc agehinst openk, half

More on Correlations

You also have the option of just showing half of the plot:

- Type: graph matrix gdppc agehinst openk, half

Multiple Regression

Now the moment everyone has been waiting for...multiple regressions!

- Before I show you the mechanics of how to run multiple regressions, think about why we would even want to in the first place. Why would it be important to analyze multiple variables?

Multiple Regression

Now the moment everyone has been waiting for...multiple regressions!

- Before I show you the mechanics of how to run multiple regressions, think about why we would even want to in the first place. Why would it be important to analyze multiple variables?
- The format for multiple regression in Stata is identical to the format for bivariate regressions

Multiple Regression

Now the moment everyone has been waiting for...multiple regressions!

- Before I show you the mechanics of how to run multiple regressions, think about why we would even want to in the first place. Why would it be important to analyze multiple variables?
- The format for multiple regression in Stata is identical to the format for bivariate regressions
- Type regress yvariablename xvariablename1 xvariablename2 and so on

Multiple Regression

Now the moment everyone has been waiting for...multiple regressions!

- Before I show you the mechanics of how to run multiple regressions, think about why we would even want to in the first place. Why would it be important to analyze multiple variables?
- The format for multiple regression in Stata is identical to the format for bivariate regressions
- Type regress yvariablename xvariablename1 xvariablename2 and so on
- Try regress gdppc agehinst openk

Multiple Regression

Now the moment everyone has been waiting for...multiple regressions!

- Before I show you the mechanics of how to run multiple regressions, think about why we would even want to in the first place. Why would it be important to analyze multiple variables?
- The format for multiple regression in Stata is identical to the format for bivariate regressions
- Type regress yvariablename xvariablename1 xvariablename2 and so on
- Try regress gdppc agehinst openk
- As you can see, the output also looks similar to the bivariate regression output. Let's go over it again.

Multiple Regression

. regress gdppc agehinst openk

Source	SS	df	MS
Model Residual	$2.6680 \mathrm{e}+09$	$2.0793 \mathrm{e}+09$	129
Total	$4.7349 \mathrm{e}+09$		
$448 \mathrm{e}+09$	131	36239448.5	

Number of obs	$=132$
F(2, 129)	$=82.76$
Prob $>$ F	$=0.0000$
R-squared	$=0.5620$
Adj R-squared	$=0.5552$
Root MSE	$=4014.8$

gdppc	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
agehinst	161.8961	12.81207	12.64	0.000	136.5471	187.2451
openk	22.85708	8.93327	2.56	0.012	5.182386	40.53177
_cons	101.9413	$\mathbf{7 9 8 . 4 5 5 5}$	$\mathbf{0 . 1 3}$	$\mathbf{0 . 8 9 9}$	$\mathbf{- 1 4 7 7 . 8 2 2}$	1681.705

Multiple Regression

- Just as before, we can use the information from the output to create our regression line

Multiple Regression

- Just as before, we can use the information from the output to create our regression line
- $\hat{y}=102+162 x_{1}+23 x_{2}$

Multiple Regression

- Just as before, we can use the information from the output to create our regression line
- $\hat{y}=102+162 x_{1}+23 x_{2}$
- IncomePerCapita $=102+162 *$ RegimeAge $+23 *$ TradeOpenness

Multiple Regression

- The slope for x_{1} : For each [unit] increase in $\left[x_{1}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{2}]. This is the effect of $\left[x_{1}\right]$ on [y], holding $\left[x_{2}\right]$ constant.

Multiple Regression

- The slope for x_{1} : For each [unit] increase in [x_{1}], [y] is expected to [increase/decrease] on average by [the slope], controlling for [x_{2}]. This is the effect of $\left[x_{1}\right]$ on [y], holding $\left[x_{2}\right]$ constant.
- The slope for x_{2} : For each [unit] increase in $\left[x_{2}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{1}]. This is the effect of $\left[x_{2}\right.$] on [y], holding $\left[x_{1}\right]$ constant.

Multiple Regression

- The slope for x_{1} : For each [unit] increase in $\left[x_{1}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{2}]. This is the effect of $\left[x_{1}\right]$ on [y], holding $\left[x_{2}\right]$ constant.
- The slope for x_{2} : For each [unit] increase in $\left[x_{2}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{1}]. This is the effect of $\left[x_{2}\right.$] on [y], holding [x_{1}] constant.
- The y-intercept: when $\left[x_{1}\right.$ and $\left.x_{2}\right]$ are $0,[y]$ is expected to equal the [y-intercept].

Multiple Regression

- The slope for x_{1} : For each [unit] increase in $\left[x_{1}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{2}]. This is the effect of $\left[x_{1}\right]$ on [y], holding $\left[x_{2}\right]$ constant.
- The slope for x_{2} : For each [unit] increase in $\left[x_{2}\right],[y]$ is expected to [increase/decrease] on average by [the slope], controlling for [x_{1}]. This is the effect of $\left[x_{2}\right.$] on [y], holding $\left[x_{1}\right]$ constant.
- The y-intercept: when $\left[x_{1}\right.$ and $\left.x_{2}\right]$ are $0,[y]$ is expected to equal the [y-intercept].
- (Adjusted) R-squared: [XXX] \% of the variability in [y] is explained by both [x_{1} and x_{2}] (or by the model).

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?
- What would my regression line equation look like?

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?
- What would my regression line equation look like?
- Interpret the intercept.

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?
- What would my regression line equation look like?
- Interpret the intercept.
- Interpret the slope for x_{1}.

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?
- What would my regression line equation look like?
- Interpret the intercept.
- Interpret the slope for x_{1}.
- Interpret the slope for x_{2}.

Multiple Regression

Now it's your turn. What if I wanted to know the effect of regime age and investment on growth?

- What code would I use?
- What would my regression line equation look like?
- Interpret the intercept.
- Interpret the slope for x_{1}.
- Interpret the slope for x_{2}.
- Interpret the R-squared.

Multiple Regression

. regress growth agehinst investment

Source	SS	$d f$	MS
Model Residual	$\mathbf{8 5 . 0 4 6 3 5 5 1}$	$\mathbf{2} 226.84203$	42.5231776
Total	5311.88839	131	40.5181553

Number of obs	$=132$
F(2, 129)	$=1.05$
Prob $>$ F	$=0.3531$
R-squared	$=0.0160$
Adj R-squared	$=0.0008$
Root MSE	$=6.3654$

growth	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
agehinst	-.0070879	.0214204	-0.33	0.741	-.0494686	.0352929
investment	.0980832	.0680047	1.44	0.152	-.0364658	.2326321
_cons	1.19037	1.130256	1.05	0.294	-1.045868	3.426609

Multiple Regression

- Code: regress growth agehinst investment

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$
- Or, $\widehat{\text { Growth }}=1.190-0.007 *$ RegimeAge +0.098 Investment

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$
- Or, $\widehat{\text { Growth }}=1.190-0.007 *$ RegimeAge +0.098 Investment
- Intercept: When regime age and investment are 0 , growth is expected to equal 1.190.

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$
- Or, $\widehat{\text { Growth }}=1.190-0.007 *$ RegimeAge +0.098 Investment
- Intercept: When regime age and investment are 0 , growth is expected to equal 1.190.
- Slope of x_{1} : For each year increase in regime age, growth is expected to decrease on average by 0.007 , controlling for investment. This is the effect of regime age on growth, holding investment constant.

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$
- Or, $\widehat{\text { Growth }}=1.190-0.007 *$ RegimeAge +0.098 Investment
- Intercept: When regime age and investment are 0, growth is expected to equal 1.190.
- Slope of x_{1} : For each year increase in regime age, growth is expected to decrease on average by 0.007 , controlling for investment. This is the effect of regime age on growth, holding investment constant.
- Slope of x_{2} : For each percent increase in investment, growth is expected to increase on average by 0.098, controlling for regime age. This is the effect of investment on growth, holding regime age constant.

Multiple Regression

- Code: regress growth agehinst investment
- Regression line: $\hat{y}=1.190-0.007 x_{1}+0.098 x_{2}$
- Or, $\widehat{\text { Growth }}=1.190-0.007 *$ RegimeAge +0.098 Investment
- Intercept: When regime age and investment are 0, growth is expected to equal 1.190.
- Slope of x_{1} : For each year increase in regime age, growth is expected to decrease on average by 0.007 , controlling for investment. This is the effect of regime age on growth, holding investment constant.
- Slope of x_{2} : For each percent increase in investment, growth is expected to increase on average by 0.098, controlling for regime age. This is the effect of investment on growth, holding regime age constant.
- R-squared: 1.6% of the variability in growth is explained by both regime age and investment.

